Conversational AI (artificial intelligence) today is probably the closest technology has come to mimicking human interactions.
That’s one of the reasons this tech has grown in popularity — and for customer experience in particular. In a world where businesses try to engage their customers on a personal level across digital touchpoints, virtual assistants and AI tools make effective (and cost-efficient) allies.
But, the workings of artificial intelligence are often complex. If you want to know more about this technology, start here; our beginner’s guide will cover these essential aspects of conversational AI:
Let’s dive in.
Conversational AI is a set of technologies that allow an application to communicate with humans via voice or text. This is possible when the application understands what humans are saying (or typing) and formulates an appropriate response.
The most advanced function of this tech is using machine learning to learn over time. This helps the system improve both its understanding of human speech and its ability to construct the right replies.
A conversational solution is usually a user-facing chatbot, virtual assistant, or voice assistant. For example, people can ask a question to a pop-up widget (often looking like a robot with antennas) and artificial intelligence will make sure the conversation sounds and feels natural.
Conversational AI technologies revolve around machine learning, natural language processing, and advanced speech recognition.
Machine learning is an AI method that allows systems to use data to continuously improve their ability to recognize patterns and make decisions. The more data is fed into a system, the more capable that system becomes.
Conversational applications use ML to better understand human interactions. What do humans mean? What responses do they expect? How can these responses be more accurate or personable? Machine learning helps the system answer these questions over time.
In customer-facing chatbots, learning translates into more questions answered successfully and fewer fallbacks to human agents.
NLP is the technology that allows the machine to analyze human language. NLP breaks down human sentences to identify actions or information.
One part of NLP is natural language understanding (NLU). This function deals with, as you may have guessed, understanding intent. Using NLU, the system can dissect and recognize the meaning behind a person’s words. That’s the first step in any successful conversation — it’s what humans naturally do (most of them at least).
While NLU works well with text-based user inputs, what happens when a human speaks? Then, the system will need a way to transform verbal speech into a format it can understand. That’s what ASR does.
ASR will work together with NLU to make sense of what the user is saying in voice-based applications.
Dialogue (or dialog) management is the part of the application that will determine what the correct response is. For example, if a user asks whether an item exists in inventory, the dialogue management will initiate a dialogue about inventory.
This system's job can become complex because it can take into account context and the flow of the conversation. For example, if the user asks for price of a particular product and then asks merely for color, dialogue management will understand that the second question refers to the item mentioned previously. Or, if the AI asks for a location and the user replies with both a location and a date, the chatbot will keep the knowledge of the date and will not ask again.
So, the AI understands what you said and has determined the response via dialogue management. How can it put that response in a format the human user would understand?
What it needs is NLG — this AI function allows computers to formulate words in human language. It’s basically the technology that makes this whole interaction “conversational”.
One of the most intriguing applications of NLG is personalization. For example, the Orlando Magic basketball team used NLG to send automated emails to fans, personalized based on their past behavior. This kind of personalization can be applied to various employee- and customer-facing communications.
This technology isn’t necessary for a conversational bot to work, but it does help take things up a notch, providing a way to process and identify user emotions by analyzing the sentiment of the words they’re using.
And that’s the ultimate way to make conversational artificial intelligence truly (although not completely) mimic humans.
Emotions are a core part of our interactions with other people. Especially when it comes to customer experience, knowing that your customer is frustrated helps you apply empathy to your responses. You can use it in other ways, too — like keeping track of happy customers to see the impact of your brand.
Conversational AI uses ASR, NLP, and machine learning to understand and respond to users, while becoming better at it over time.
Here’s a breakdown of how a conversational application would work:
Despite its many effective uses in business, this kind of AI requires substantial training and can only do very specific tasks. It’s not an advanced form of artificial intelligence that thinks and plans (that’s the stuff of science fiction for now).
‘AI-powered chatbots’ is a term often used interchangeably with conversational AI. But, not all chatbots use artificial intelligence.
A chatbot can work on a very basic level, too — giving pre-determined greetings, asking specific questions, or providing standardized answers. This type of chatbot is more like a rule-based answering machine, and may often have trouble understanding users or providing the right answers if it hasn’t been specifically trained to.
AI-powered chatbots, though, count as conversational AI because they use the related technologies to interact with users.
So, the two terms aren’t exactly the same, but there’s significant overlap.
Get our complete guide to learn what makes a successful chatbot, see use cases, and how to implement your own bot.
Conversational AI is usually a way to offer faster and smoother support over digital channels. A chatbot on Messenger, an in-app virtual assistant, or an AI-powered bot on a website can all be common use cases for conversational AI. Alexa, Siri, Cortana and Google Home are the more advanced examples of this type of technology.
Here are more general examples:
AI chatbots can offer instant support whether it’s after hours or in cases of emergency. Especially when it comes to non-complex issues, it’s not productive for customers to wait on the phone or even for an answer in live chat and email. With AI, they can get an answer much faster, while at the same time keeping some part of the conversational aspect of human interactions.
AI-powered chatbots can collect data and understand what each user is likely to want. Setting up chatbots to suggest products or content based on those insights is a great way to engage users. For example, if a user is looking for ski goggles, the chatbot can help them decide and then try to recommend other ski equipment.
Most often a use case in banking, AI can help users with various transactions. From paying bills to tracking expenses and making projections to canceling orders, conversational AI is an easy and pleasant way for users to handle everyday tasks.
Training and onboarding (both for customers and new hires) can be long and complex processes. The AI can help relieve the burden from human instructors or customer-facing roles, by offering quick and helpful advice. Your bot can be constantly on-call for any customer or employee who needs help with a new product or process.
Of course, there are different use cases according to industry. Check out a more detailed overview of what AI chatbots can do per industry.
The whole Internet has been getting more conversational with time — you have to have a more personable connection with people, machines, and businesses when navigating online.
Enter conversational AI.
Apart from the “cool” element, this technology has substantial benefits for business, too. Here are the main benefits of conversational AI:
If you’ve decided to try your hand with this technology to improve customer experience, here are a few things to consider:
Have you ever tried your hand with chatbots, machine learning or other AI applications for customer service? We'd love to hear about your personal experience with artificial intelligence. Let us know with a comment.
Nikoletta Bika is an experienced content marketer, writer, and editor, with degrees in business and people management. She writes about data, tech trends, AI, and more.
Successful omnichannel marketing isn’t just about being active on multiple platforms. It’s about
Customer communication management should be high on any company’s agenda – and yet, 88 percent o
One of the biggest challenges in online business is to generate leads and convert them to customers.
Add Comment